La projection de l'empilement moléculaire sur le plan ($x O z$) est représentée sur la Fig. 4. Les chiffres romains (I à VII) inscrits dans les cycles benzéniques permettent de repérer les molécules correspondantes. La partie supérieure des molécules est dessinée en traits épais et la partie inférieure en traits fins.

L'empilement moléculaire, dans la structure de l'acétyl-I' benzoylferrocène, est déterminé par les forces de van der Waals provenant surtout des contacts $\mathrm{C} \cdots \mathrm{C}, \mathrm{C} \cdots \mathrm{H}$ et $\mathrm{H} \cdots \mathrm{H}$ (Tableau 5). Le nombre important de courtes distances entre les atomes de la molécule I et ceux des molécules II, VI, IV, XI, XIV et surtout VII est assez remarquable, d'autant que certaines de ces distances (notées par un astérisque dans le Tableau 5) sont inférieures à la somme des rayons de van der Waals. Ceci dénote un empilement moléculaire extrêmement compact. Les contacts intermoléculaires les plus nombreux et les plus forts se font par l'intermédiaire des cycles benzéniques ($c f$. contacts entre les molécules I et VII; entre I et IV).
En comparant les Fig. 3(a) et 4, nous constatons que le fait d'amener le centre de gravité $G(\mathrm{I})$ en coïncidence avec le centre de l'atome de fer entraîne le rapprochement des cycles benzéniques I et VII, I et XIV, II et IV etc.... Ceci conduit à penser que la torsion du noyau ferrocénique et, en particulier, le décalage des cycles pentadiéniques, est bien provoqué par les interactions intermoléculaires consécutives à le tendance des molécules organiques à s'empiler selon un assemblage le plus compact possible (Kitaigorodskii, 1961).

Nous tenons à remercier Monsieur le Professeur R. Dabard (Laboratoire de Chimie Organique E, Faculté des Sciences de Rennes) qui nous a suggéré cette étude et a préparé les cristaux d'acétyl-I' benzoyl-
ferrocène. Tous les calculs ont été réalisés au Centre de Calcul du C.N.R.S. à Paris à l'aide de programmes mis à notre disposition par Madame C. Pascard (Maître de Recherche au C.N.R.S., Gif-sur-Yvette) à qui nous exprimons notre vive reconnaissance.

Références

Busing, W. R. \& Levy, H. A. (1959a). Report ORNL 59-4-37. Oak Ridge National Laboratory, Tennessee. Busing, W. R. \& Levy, H. A. (1959b). ORXFE. Oak Ridge National Laboratory, Tennessee.
Calvarin, G., Bouvaist, J. \& Weigel, D. (1969). C. R. Acad. Sci., Paris, 268, 2288.
Calvarin, G. \& Weigel, D. (1970). Bull. Soc. Chim. A paraitre.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cruickshank, D. W. J. (1965). In Computing Methods in Crystallography. Oxford: Pergamon Press.
Dabard, R. \& Patin, H. (1966). C. R. Acad. Sci., Paris, 263, 1153.
Dunitz, J. D., Orgel, L. E. \& Rich, A. (1956). Acta Cryst. 9, 373.
Hardgrove, G. L. \& Templeton, D. H. (1959). Acta Cryst. 12, 28.
Jones, N. D., Marsh, R. E. \& Richards, J. H. (1965). Acta Cryst. 19, 330.
Kaluski, Z. L. \& Struchoov, Yu. T. (1965) J. Struct. Chem. 6, 296.
Kaluski, Z. L., Struchiov, Yu. T. \& Avoyan, R. L. (1964). Zh. Strukt. Khimii, 5, 743.

KitaigorodskiI, A. J. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.
Macdonald, A. C. \& Trotter, J. (1964). Acta Cryst. 17, 872.

Tavard, C., Nicolas, D. \& Rouault, M. (1967). J. Chim. Phys. 64(3), 546.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318.

The Crystal Structure of Barium Monoferrite, $\mathrm{BaFe}_{\mathbf{2}} \mathrm{O}_{\mathbf{4}}$

By Hiromichi Mitsuda, Saburo Mori and Chisato Okazaki
Wireless Research Laboratory, Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka, Japan

(Received 24 February 1970)
Single-crystal diffraction patterns of 'hexagonal barium monoferrite', $\mathrm{BaFe}_{2} \mathrm{O}_{4}$ have revealed that the crystals consist of twin components and the symmetry of the component crystal is orthorhombic. The unit cell contaning eight formula units has the dimensions: $a=19 \cdot 05, b=5 \cdot 390$ and $c=8 \cdot 448 \AA$. The space group is $B b 2_{1} m$. Parametric relations were found between the unit cell above mentioned and the hexagonal lattice reported for barium monoaluminate, but the structure of $\mathrm{BaFe}_{2} \mathrm{O}_{4}$ cannot simply be regarded as a superstructure of $\mathrm{BaAl}_{2} \mathrm{O}_{4}$, except for the positions of the barium atoms. The key to the structure was obtained from characteristics of reflexions and the Po function. Each iron atom is surrounded tetrahedrally by four oxygen atoms, while there are two kinds of barium atoms, one surrounded by seven and the other by eleven oxygen atoms. The arrangement of the atoms is not a close packed one.

Introduction

Most of the ferrites, $\mathrm{M}^{2+} \mathrm{Fe}_{2}^{3+} \mathrm{O}_{4}^{2-}$, crystallize in the spinel structure which is characterized by the small
size of the divalent metallic ions. These together with the ferric ions occupy the interstices in the closepacked framework formed by the oxygen ions. This will not be the case if the size of the divalent ions in-
creases. For instance, calcium monoferrite assumes a different structure from that of spinel (Hill, Peiser \& Rait, 1956; Decker \& Kasper, 1957), in which the calcium ions tend to be eight- or ninefold coordinated and the iron ions are octahedrally surrounded by oxygen atoms. Several authors reported the crystal structure of strontium monoferrite (Hill, Peiser \& Rait, 1956; Kanamaru \& Kiriyama, 1964). Though the structure does not seem to be established, it is evident that it is different from the spinel structure.

The phase equilibrium of the two component system, $\mathrm{BaO}-\mathrm{Fe}_{2} \mathrm{O}_{3}$, was extensively studied by Okazaki, Kubota \& Mori (1955). They found barium monoferrite, $\mathrm{BaFe}_{2} \mathrm{O}_{4}$, as a distinct compound which was confirmed by several workers (Inoue \& Iida, 1958; Lotgering, 1959; Goto \& Takada, 1960). Okazaki, Mori \& Kanamaru (1961) succeeded in preparing 'single crystals' of barium monoferrite and reported they are antiferromagnetic and the crystal structure is based on a unit cell having the dimensions $a=5 \cdot 51 n$ and $c=8.44 \AA$, of approximately hexagonal symmetry. Glasser \& Glasser (1963) reported from a powder diffraction study that it has the barium monoaluminate, $\mathrm{BaAl}_{2} \mathrm{O}_{4}$, structure.

Okazaki, Mori \& Mitsuda (1963) showed that single crystals of barium monoferrite grown from melt were in fact twinned crystals consisting of three components (trilling), the c axis being the axis of twinning. They further found that the true symmetry of the crystal is orthorhombic and the unit cell has the dimensions $a_{0}=19.05, b_{0}=5.390$ and $c_{0}=8.448 \AA$. Kanamaru \& Kiriyama (1964) and Do Dinh \& Bertaut (1965) reported that they had found a phase having the same type of lattice as that of barium monoferrite in the solid solution represented by $\mathrm{BaFe}_{x} \mathrm{Al}_{2-x} \mathrm{O}_{4}$ in the range $x>1 \cdot 8$.

Recently, Arlett, White \& Robbins (1967) and Perrotta \& Smith (1968) reported that barium monoaluminate assumes a superstructure (a doubling of the hexagonal a axis), though the crystal structure was not given.

In this paper, the results of an X-ray investigation on the mode of twinning and the crystal structure of artificially prepared crystals of barium monoferrite will be given. The structural relation between barium monoferrite and barium monoaluminate will also be discussed.

Experimental

Barium monoferrite was prepared by heating a mixture of barium carbonate and ferric oxide. The raw materials, in the stoichiometric ratio were intimately mixed and ground in a ball mill. After drying, they were made into pellets, which were fired at $1300^{\circ} \mathrm{C}$ for 4 hours.

Single crystals were prepared by the Bridgman method. Barium monoferrite prepared in the above mentioned way was put in a conical platinum crucible and was melted and kept at about $1470^{\circ} \mathrm{C}$ for 2 hours in an oxygen atmosphere, followed by cooling slowly
at a rate of 5 to $10^{\circ} \mathrm{C}$ per hour. This treatment yielded a lump of small crystals, which was confirmed to be barium monoferrite, $\mathrm{BaFe}_{2} \mathrm{O}_{4}$, by a chemical analysis.

The crystals are dark brown in colour and have a cleavage. It is difficult to cut out the crystal of suitable size for X-ray analysis because of brittleness. Therefore an effort was made to select suitable crystals by means of the Laue method. As has been reported earlier (Okazaki, Mori \& Mitsuda, 1963), these crystals were found to be twinned. The crystal used for the X-ray work has approximate dimensions, $0.2 \times 0.5 \times 0.1$ mm , the longest direction being along the b axis.

Oscillation photographs taken with the axis perpendicular to the cleavage plane as axis of rotation gave an identity period of $8.45 \AA$, which we shall call the c axis. A series of Weissenberg photographs about the same axis were taken with the Fe -filtered $\mathrm{Co} K \alpha$ and Ni-filtered $\mathrm{Cu} K \alpha$ radiations. The photographs of the even layer lines showed a splitting of the reflexions into two or three. There appeared a group of fairly strong reflexions - which we shall call main reflexions and another group of rather faint reflexions as shown in Fig. 1(a).

If one ignores the splitting and considers only the main reflexions, these photographs could be interpreted by a hexagonal unit cell similar to that reported for barium monoaluminate (Wallmark \& Westgren, 1937). The splitting of these reflexions indicates that the fragment is a twinned crystal consisting of three individuals with the c axis in common and mutually oriented at 120°, and the symmetry of each individual is not hexagonal but orthorhombic.

The faint reflexions are found to be satisfactorily indexed with the same orthorhombic unit cell. These correspond to the missing reflexions for the orthohexagonal lattice. A composite reciprocal lattice representation is given in Fig. 2(a).

Weissenberg photographs of the odd layer lines showed a peculiar pattern. An example of the photograph, $l=5$, is shown in Fig. $1(b)$. There can be seen grouping of reflexions, some in a form of a hexagon. It is found that these reflexions also lie on a composite reciprocal lattice layer if the length of a is doubled, as shown in Fig. 2(b).

These conclusions were confirmed by analysis of the powder diffraction patterns. Powder patterns were taken by an automatic recording diffractometer using $\mathrm{Cu} K \alpha, \mathrm{Fe} K \alpha$ and $\mathrm{Co} K \alpha$ radiations, and also by a Guinier focusing camera with monochromatized $\mathrm{Cu} K \alpha$ radiation. Strong reflexions corresponding to the main reflexions except $00 l$ are split because of the deviation from hexagonal symmetry. The other reflexions observed are accounted for as the super-lattice lines of the pseudo-hexagonal sub-unit cell obtained by the main reflexions. All the reflexions were satisfactorily indexed based on the orthorhombic unit cell, $a_{0}=$ $19.05 \pm 0.01, \quad b_{0}=5.390 \pm 0.004, \quad c_{0}=8.448 \pm 0.006 \AA$, which can be taken as a superstructure of the pseudohexagonal unit cell $a_{s}=b_{s}=5.473, c_{s}=8.448 \AA, \gamma_{s}=$

Fig. 1. Weissenberg photographs taken around the c axis. (a) Zero layer. (b) 5th layer.
121°. The following relations exist between the orthorhombic cell and the pseudo-hexagonal sub-unit cell, $a_{0}=2\left(a_{s}-b_{s}\right), b_{0}=a_{s}+b_{s}, c_{0}=c_{s}$. The crystal under examination is found to be a single phase, and the possibility of segregation into two or more phases is definitely ruled out. Miller indices, observed and calculated interplanar spacings and relative intensities are given in Table 1 for the powder pattern. The orthorhombic cell contains eight chemical units of $\mathrm{BaFe}_{2} \mathrm{O}_{4}$. The calculated density, 4.79 g. cm^{-3}, agrees satisfactorily with the observed value, $4.70 \mathrm{~g} . \mathrm{cm}^{-3}$.

Systematic absences are $h k l$ with $h+l$ odd and $0 k l$ with k odd, and the corresponding space groups are $B b 2_{1} m, B b m 2, B b m m$. For intensity data the $h 0 l, h 1 l$, $h 2 l, h k 3, h k 5$ reflexions were recorded on multiple film Weissenberg photographs using Fe-filtered Co $K \alpha$ and Ni -filtered $\mathrm{Cu} K \alpha$ radiation. The intensities were
estimated by visual comparison with the time exposure calibrated strips and were corrected for Lorentz and polarization factors in the usual way. The linear absorption coefficients were calculated to be $\mu=1230,1080$ cm^{-1} for $\mathrm{Cu} K \alpha$, $\mathrm{Co} K \alpha$ radiation, respectively. Using these coefficients, an absorption correction was made by assuming cylindrical shape of the sample. An absolute intensity scale factor and an overall isotropic temperature factor ($B=2 \cdot 0 \AA^{2}$) were obtained by the method of Wilson (1942).

Determination of the structure

The main reflexions are characterized by h, l and $h / 2+k$ all even. They could be indexed based on a pseudo-hexagonal unit cell derivable from the barium monoaluminate structure. The reflexions with h, l odd

Fig. 2. Sections of twinned reciprocal lattice deduced from Weissenberg photographs. Three orientations required to index all reflexions. (a) Zero layer; open circles indicate the faint reflections. Reciprocal lattices are drawn only with h even. (b) 3rd layer; reciprocal lattices are drawn only with h odd.

- which we shall designate as 'odd reflexions' - appear on the powder patterns as super-lattice lines of the pseudo-hexagonal unit cell mentioned above. Because of the twinning, these 'odd reflexions' appear as satellites on oscillation photographs rotated about the a and b axis, and as spots arrayed in deformed hexagons on Weissenberg photographs rotated about the c axis. The reflexions with h, l even and $h / 2+k$ odd are very weak or absent.

Since the pseudo-hexagonal sub-unit cell has nearly the same dimensions as those of barium monoaluminate, it was first assumed that the positions of the heavy atoms might be close to those of the barium and aluminum atoms in the barium monoaluminate structure. It was possible to assign positions for the eight barium atoms and sixteen iron atoms corresponding to the arrangement derivable from the barium monoaluminate structure from any of the three space groups $B b 2_{1} m, B b m 2$ and $B b m m$. They are $0,0,0 ; \frac{1}{2}, 0, \frac{1}{2}+$

$$
\begin{aligned}
8 \mathrm{Ba}: & \frac{1}{8}, \frac{1}{4}, 0 ; \frac{3}{8}, \frac{3}{4}, 0 ; \\
& \frac{5}{8}, \frac{1}{4}, 0 ; \frac{7}{8}, \frac{3}{4}, 0 \\
16 \mathrm{Fe}: & \frac{1}{24}, \frac{3}{4}, \pm \frac{1}{4} ; \frac{5}{24}, \frac{3}{4}, \pm \frac{1}{4} ; \\
& \frac{7}{24}, \frac{1}{4}, \pm \frac{1}{4} ; \frac{11}{24}, \frac{1}{4}, \pm \frac{1}{4} .
\end{aligned}
$$

The calculated structure factors roughly agree with the observed ones for the main reflexions. However, this arrangement of atoms does not give any contribution to the 'odd reflexions'.

It was found that the 'odd reflexions' had maximum intensities with indices $h=6 n+1$, when $l=4 m+1$ and $h=6 n+5$, when $l=4 m+3$, where $n=0,1,2,3 ; m=0$, 1,2. Furthermore, it was found that the distributions of the intensities of these reflexions appearing on the Weissenberg photographs rotated about the b axis were almost the same for different k. Therefore, the
intensities of the 'odd reflexions' can be represented by

$$
I_{\mathrm{obs}}(h, k, l \text { odd }) \propto \cos ^{2}\left(\frac{\pi h}{6}+(-1)^{(l+1) / 2} \cdot \frac{\pi}{6}\right)
$$

It has been demonstrated that the P_{E} function, a Pat-

Fig. 3. Odd Patterson function projected on (010). Negative contours are dotted. $A: \mathrm{Ba}(\mathrm{I})-\mathrm{Fe}(\mathrm{II}), \mathrm{Ba}(\mathrm{II})-\mathrm{Fe}(\mathrm{I}), \mathrm{Fe}(\mathrm{I})-$ $\mathrm{O}(\mathrm{V}), \mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{IV}) . B: \mathrm{Ba}(\mathrm{I})-\mathrm{Fe}(\mathrm{I}), \mathrm{Ba}(\mathrm{II})-\mathrm{Fe}(\mathrm{II}),-\mathrm{Fe}(\mathrm{I})-$ $\mathrm{O}(\mathrm{V}),-\mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{IV}) . C: \mathrm{Fe}(\mathrm{I})-\mathrm{Fe}(\mathrm{II}), \mathrm{Ba}(\mathrm{I})-\mathrm{O}(\mathrm{V}), \mathrm{Ba}(\mathrm{II})-$ O (IV). $\quad D: \mathrm{Fe}(\mathrm{I})-\mathrm{Fe}(\mathrm{I}), \quad \mathrm{Fe}(\mathrm{II})-\mathrm{Fe}(\mathrm{II}) . \quad E: \quad \mathrm{Fe}(\mathrm{I})-\mathrm{Fe}(\mathrm{II})$. $F: \mathrm{Ba}(\mathrm{II})-\mathrm{Fe}(\mathrm{II}),-\mathrm{Ba}(\mathrm{II})-\mathrm{Fe}(\mathrm{I}), \mathrm{Fe}(\mathrm{I})-\mathrm{O}(\mathrm{IV}),-\mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{V})$. $G: \mathrm{Ba}(\mathrm{I})-\mathrm{Fe}(\mathrm{II}),-\mathrm{Ba}(\mathrm{I})-\mathrm{Fe}(\mathrm{I}) . H: \mathrm{Ba}(\mathrm{I})-\mathrm{Ba}(\mathrm{II}), \mathrm{Ba}(\mathrm{I})-\mathrm{Ba}(\mathrm{I})$, $-\mathrm{Ba}(\mathrm{II})-\mathrm{Ba}(\mathrm{II}) . \quad I: \mathrm{Fe}(\mathrm{II})-\mathrm{Fe}(\mathrm{II}),-\mathrm{Fe}(\mathrm{I})-\mathrm{Fe}(\mathrm{I}), \mathrm{Fe}(\mathrm{I})-\mathrm{O}(\mathrm{I})$, $\mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{III}), \mathrm{Fe}(\mathrm{I})-\mathrm{O}(\mathrm{II}), \mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{II}) . J: \mathrm{Ba}(\mathrm{I})-\mathrm{Ba}(\mathrm{II})$. $K: \mathrm{Fe}(\mathrm{I})-\mathrm{O}(\mathrm{IV}), \mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{V})$.

Table 1. Powder pattern of $\mathrm{BaFe}_{2} \mathrm{O}_{4}$
A Guinier focusing camera with monochromatized $\mathrm{Cu} K \alpha$ radiation $\lambda=1.5405 \AA$ was used.

($h k l$)	$d_{\text {obs }}$	$d_{\text {cal }}$	I	(hkl)	$d_{\text {obs }}$	$d_{\text {cal }}$	I
101	7.728	7.729	W	721	1.866	1.868	W
400	4.766	4.762	MW	10,10	1.792	1.796	WWW
210	$4 \cdot 691$	$4 \cdot 691$	M	820	1.779	1.785	WWW
111	$4 \cdot 425$	$4 \cdot 423$	MW	230	1.760	1.767	WWW
402	$3 \cdot 155$	3.160	SS	105	1.682	1.683	WWW
212	$3 \cdot 134$	3. 140	SSS	614	1.671	1.672	MS
610	2.736	2.736	SS	024	1.661	1.662	MW
020	$2 \cdot 688$	2.695	S	10,12	$1 \cdot 652$	1.653	M
701	2.589	$2 \cdot 590$	W	822	1.642	1.644	M
121	2.547	2.545	W	232	1.626	1.629	MS
113	2.473	2.474	W	115	1.607	1.607	WW
800	$2 \cdot 378$	$2 \cdot 381$	WWW	12,00	1.587	1.587	M
420	$2 \cdot 342$	$2 \cdot 346$	W	630	$1 \cdot 562$	1.564	MS
711	$2 \cdot 336$	$2 \cdot 336$	W	12,20	$1 \cdot 367$	1.369	M
612	$2 \cdot 296$	$2 \cdot 296$	M	040	$1 \cdot 348$	$1 \cdot 348$	MW
022	$2 \cdot 268$	$2 \cdot 272$	W	12,04	$1 \cdot 267$	1.269	MW
004	$2 \cdot 111$	$2 \cdot 112$	M	634	$1 \cdot 255$	$1 \cdot 257$	M
513	2.088	2.088	WW	14,12	1.255	$1 \cdot 259$	M
802	2.074	2.074	M	10,32	$1 \cdot 246$	$1 \cdot 250$	MW
422	2.047	2.050	MS	442	$1 \cdot 237$	1.239	MW
404	1.926	1.930	M				
214	1.926	1.926	M				

terson function synthesized using even terms alone will give the interatomic vectors arising from the averaged structure, while the P_{o} function, synthesized from odd terms, will give the vectors from the displaced structure (Sakurai, 1958; Qurashi, 1963). A three dimensional $P_{o}(u, v, w)$ function was synthesized. It showed up antisymmetric planes at $u=\frac{1}{4}$ and at $w=\frac{1}{4}$ as shown in Fig. 3.
Since displacements of heavy atoms from the averaged structure (sub-unit structure) should appear at $v=0$ and $\frac{1}{2}$, the other antisymmetric pairs which appear at $v=\frac{1}{3}$, $\frac{1}{6}$ must arise from the interactions between heavy atoms and oxygen atoms. As the approximate parameters of the heavy atoms are known, it is possible to assign those for the oxygen atoms. Now that the lattice translation along the b axis is $5 \cdot 390 \AA$, the interatomic distances between the oxygen atoms would be too close if we admit the space groups $B b m m$ and $B b m 2$, because both of these two space groups have mirror planes perpendicular to the b axis. On the other hand, the space group $B b 2_{1} m$ has no mirror planes perpendicular to the b axis, and it allows the oxygen atoms to take any values for y. Moreover, a Patterson projection onto (001) synthesized using reflexions with $h / 2+k$ odd alone definitely indicated atomic shifts along the b direction. Accordingly, the proper space group for barium monoferrite is determined to be $B b 2_{1} m$, which contains the following equivalent positions: $0,0,0 ; \frac{1}{2}, 0, \frac{1}{2}+8(b): x, y, z ; x, y, z$; $\bar{x}, \frac{1}{2}+y, z ; \bar{x}, \frac{1}{2}+y, \bar{z}, 4(a): x, y, 0 ; \bar{x}, \frac{1}{2}+y, 0$.

The peaks A and B near $\frac{1}{6}, 0, \frac{1}{4}$ in the P_{o} function were taken to be the antisymmetric pairs due to the displacements of barium and iron atoms from the averaged structure. The peak C at $\frac{1}{6}, 0,0$ was taken as arising from interactions between iron atoms. Coordinates of barium and iron atoms can, therefore, be taken as follows:

Fig. 4. Residual electron density projection on (010), showing oxygen atoms. The contributions of the barium and iron atoms have been subtracted. Contours are at intervals of $5 \mathrm{e} . \AA^{-2}$, starting at $7 \mathrm{e} . \AA^{-2}$. Negative contour is dotted.

$$
\begin{gathered}
\text { 8Ba: } \frac{1}{8}+\Delta x_{1}, \frac{1}{4}, 0 ; \frac{3}{8}+\Delta x_{2}, \frac{3}{4}, 0 \text { in } 4(a), \\
16 \mathrm{Fe}: \frac{1}{24}, \frac{3}{4}, \frac{1}{4}+\Delta z_{1} ; \frac{5}{24}, \frac{3}{4}, \frac{1}{4}+\Delta z_{2} \text { in } 8(b) .
\end{gathered}
$$

For simplicity, let us assume that $\Delta x_{1}=\Delta x_{2}=\Delta x$ and $\Delta z_{1}=\Delta z_{2}=\Delta z$. The absolute amplitudes of the structure factors calculated from the arrangement of heavy atoms mentioned above are represented as follows:

$$
\begin{aligned}
& \mid F_{\mathrm{cal}}(h, k, l \text { odd }) \mid \\
& =\mid-8 f_{\mathrm{Ba}}(\sin \pi h / 4)(\sin 2 \pi h \Delta x)-16 f_{\mathrm{Fe}}(\cos \pi h / 4) \\
& \times(\cos \pi h / 6)(\sin \pi l / 2)(\sin 2 \pi l \Delta z) \mid \\
& =4 / 2 \mid f_{\mathrm{Ba}}(\sin 2 \pi h \Delta x)+2 f_{\mathrm{Fe}}(\sin \pi h / 3)(\sin \pi l / 2) \\
& \times(\sin 2 \pi l \Delta z) \mid,
\end{aligned}
$$

where $(\cos \pi h / 4)(\cos \pi h / 6)=(\sin \pi h / 4)(\sin \pi h / 3)$ for h odd. On the other hand, the observed amplitudes for h, l odd have the characteristics represented by

$$
\begin{aligned}
& \mid F_{\text {obs }}(h, k, l \text { odd }) \mid \\
& =K\left|\cos \left\{\pi h / 6+(-1)^{(l+1) / 2}(\pi / 6)\right\}\right| \\
& =K\left|\frac{1}{2}(\sin \pi h / 6)(\sin \pi l / 2)+\sqrt{3} / 2(\cos \pi h / 6)\right| \\
& =\frac{1}{2} K|(\sin \pi h / 6)\{1+2 / 3(\sin \pi h / 3)(\sin \pi l / 2)\}|,
\end{aligned}
$$

where $\cos \pi h / 6=2(\sin \pi h / 6)(\sin \pi h / 3)$ for h odd. Since the factor $\sin \pi h / 6$ is equal to $\pm \frac{1}{2}$ for $h=6 n+1$ and $6 n+5$, the expression of the calculated structure factors agrees with that of the observed structure factors if Δx and Δz have the same sign. Thus, the mode of the displacements of the heavy atoms mentioned above was verified.
The value of Δz is estimated to be 0.05 from the peaks D at $0,0,0 \cdot 40$ and E at $\frac{1}{6}, 0,0 \cdot 40$. Since there were observed small peaks F and G near $\frac{1}{12}, \frac{1}{2}, \frac{1}{4}$, which would disappear if $\Delta x_{1}=\Delta x_{2}$ and $\Delta z_{1}=\Delta z_{2}$, it was suggested that these parameters had different values. Small peaks appeared at $u, \frac{1}{2}, \frac{1}{2}$. It can be shown from the peak H at $\frac{1}{4}, \frac{1}{2}, \frac{1}{2}$ that $\Delta x_{1}<\Delta x_{2}$ and from the peak I at $\frac{1}{12}, \frac{1}{2}, \frac{1}{2}$ that $\Delta z_{1}<\Delta z_{2}$. We took tentatively the following values of Δx_{1} etc. for the structure factor calculations: $\Delta x_{1}=0.004, \Delta x_{2}=0.005, \Delta z_{1}=0.04, \Delta z_{2}=$ 0.05 . Using these parameter values for barium and iron, a Fourier projection $\varrho(x, z)$ was calculated, in which three oxygen atoms came out in the asymmetric unit. From peaks appearing at $0, \frac{1}{3}, 0$ and $\frac{1}{12}, \frac{1}{6}, \frac{1}{2}$ in the P_{o} function, it was suggested that the remaining two oxygen atoms were superimposed on two iron atoms in the same projection. Thus positions of the five oxygen atoms were taken as follows: $8 \mathrm{O}(\mathrm{I}): \frac{1}{24}, \frac{5}{12}, \frac{1}{4}$, 8 O (II): $\frac{1}{8}, \frac{11}{12}, \frac{1}{4}, 8 \mathrm{O}$ (III) $: \frac{5}{24}, \frac{5}{12}, \frac{1}{4}$ in $8(a)$ and 4 O (IV): $\frac{11}{24}, \frac{1}{4}, 0,4 \mathrm{O}(\mathrm{V}): \frac{7}{24}, \frac{1}{4}, 0$ in $4(b)$. The residual disagreement factor

$$
R_{\text {odd }}(h 0 l)=\sum \| F_{o}\left|-\left|F_{c}\right|\right| \sum\left|F_{o}\right|
$$

was 28% for the $h 0 l$ reflexions with h, l odd.
Refinement of positional parameters was proceeded by computing successive ($F_{o}-F_{c}$) syntheses projected on (010). After five cycles, the $R_{\text {odd }}(h 0 l)$ was reduced
to 13%. The positions of the oxygen atoms appeared on the ($F_{o}-F_{c}$) synthesis, where F_{c} 's were the structure factors calculated with the barium and iron atoms alone is shown in Fig. 4. The Fourier projection $\varrho(x, z)$ is shown in Fig. 5: The atomic parameters were refined using 182 reflexions by the block-diagonal matrix leastsquares method. The final atomic parameters are given in Table 2.

Table 2. Atomic parameters

4Ba(I) in $4(a)$	0.1307	0.250	0
$4 \mathrm{Ba}(\mathrm{II})$ in $4(a)$	0.6173	0.227	0
$8 \mathrm{Fe}(\mathrm{I})$ in $8(b)$	0.0424	0.732	0.2776
$8 \mathrm{Fe}(\mathrm{II})$ in $8(b)$	0.2084	0.774	0.2913
$8 \mathrm{O}(\mathrm{I})$ in $8(b)$	0.037	0.403	0.243
$8 \mathrm{O}(\mathrm{II})$ in $8(b)$	0.123	0.917	0.225
$8 \mathrm{O}(\mathrm{III})$ in $8(b)$	0.209	0.417	0.281
$4 \mathrm{O}(\mathrm{IV})$ in $4(a)$	0.453	0.226	0
$4 \mathrm{O}(\mathrm{V})$ in $4(a)$	0.280	0.226	0

A comparison of the observed and calculated structure factors is listed in Table 3. The residual disagreement factors are 12% for 85 h 0 l reflexions and 16% for $97 h k l$ reflexions with h, l odd (including unobserved reflexions for which the calculated magnitude is greater than half of the minimum observable value). In all the calculations, the scattering factor curves employed were those given in International Tables for X-ray Crystallography (1962) except for O^{2-} for which the curve of Tokonami (1965) was used. The calculations of the Fourier series and structure factors were performed on an IBM 7074 computer.

Table 3. Observed and calculated structure factors
An asterisk indicates unobserved reflexions. The F_{0} values for these are given as $(1 / V 2) F_{\text {minn }}$

Discussion of the structure

Each iron atom is at the centre of a distorted tetrahedron of oxygen atoms with the $\mathrm{Fe}-\mathrm{O}$ distances ranging from 1.80 to $1.93 \AA$. These tetrahedra form a coordinated framework leaving cavities where the barium atoms are accommodated. This buildup principle is the same for the structure of barium monoaluminate which is known as the 'stuffed tridymite' type. However, in the structure of barium monoferrite the sixmembered tetrahedra forming a ring have the conformation five-up and one-down, whereas in the structure of barium monoaluminate the conformation of the

Fig. 5. Electron density projection on (010). Contours are at intervals of $10 \mathrm{e} . \AA^{-2}$ except around the barium atoms, where they are at intervals of $20 \mathrm{e} . \AA^{-2}$, starting at $7 \mathrm{e} . \AA^{-2}$. The negative contour is dotted.

Fig. 6. Projection of the structure on (001) and (010) showing the arrangement of oxygen tetrahedra surrounding iron atoms.
six tetrahedra is one-up and one-down. The structure is shown in Fig. 6. Because there is a mirror plane passing through the barium atoms and the oxygen atoms situated at the apexes of tetrahedra, the FeO_{4} tetrahedra in one layer are superposed with those in the adjoining layer as a mirror image of the former, whereas in the structure of barium monoaluminate the AlO_{4} tetrahedra are twisted by about 60° relative to one another around the c axis. There are two kinds of barium atoms which are non-equivalent. $\mathrm{Ba}(\mathrm{I})$ is surrounded by seven oxygen atoms with the $\mathrm{Ba}-\mathrm{O}$ distances ranging from 2.62 to $2.94 \AA$, and $\mathrm{Ba}(\mathrm{II})$ is surrounded by eleven oxygen atoms at distances ranging from 2.74 to $3.34 \AA$. A list of the metal-to-oxygen distances is given in Table 4. Though the structure is rather complicated, it is found that the electrostatic valency rule is nearly satisfied.

Table 4. Metal-oxygen distances in $\mathrm{BaFe}_{2} \mathrm{O}_{4}$

	No. of bonds	Bond length
$\mathrm{Fe}(\mathrm{I})-\mathrm{O}(\mathrm{I})$	1	$1.88 \AA$
$\mathrm{Fe}(\mathrm{I})-\mathrm{O}\left(\mathrm{I}^{\prime}\right)$	1	1.80
$\mathrm{Fe}(\mathrm{I})-\mathrm{O}$ (II)	1	1.88
$\mathrm{Fe}(\mathrm{I})-\mathrm{O}(\mathrm{IV})$	1	1.88
Fe (II)-O(II)	1	1.89
$\mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{III})$	1	1.93
$\mathrm{Fe}(\mathrm{II})-\mathrm{O}\left(\mathrm{III}^{\prime}\right)$	1	1.86
$\mathrm{Fe}(\mathrm{II})-\mathrm{O}(\mathrm{V})$	1	$1 \cdot 80$
$\mathrm{Ba}(\mathrm{I})-\mathrm{O}(\mathrm{I})$	2	$2 \cdot 84$
$\mathrm{Ba}(\mathrm{I})-\mathrm{O}$ (II)	2	$2 \cdot 62$
$\mathrm{Ba}(\mathrm{I})-\mathrm{O}$ (III)	2	$2 \cdot 94$
$\mathrm{Ba}(\mathrm{I})-\mathrm{O}(\mathrm{V})$	1	$2 \cdot 85$
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}(\mathrm{I})$	2	$2 \cdot 82$
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}(\mathrm{II})$	2	2.86
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}(\mathrm{III})$	2	2.74
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}(\mathrm{IV})$	1	3.00
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}\left(\mathrm{IV}^{\prime}\right)$	1	$3 \cdot 01$
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}\left(\mathrm{IV}^{\prime \prime}\right)$	1	$3 \cdot 13$
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}(\mathrm{V})$	1	$3 \cdot 33$
$\mathrm{Ba}(\mathrm{II})-\mathrm{O}\left(\mathrm{V}^{\prime}\right)$	1	$3 \cdot 34$

Okazaki, Mori \& Kanamaru (1961) found that the $1 / \chi-T$ curve is well described by the Curie-Weiss law, $\chi=C /(T+\theta)$, where $C=3.75 \times 10^{-3}$ e.m.u./g. ${ }^{\circ} \mathrm{C}, \theta=$ $200^{\circ} \mathrm{K}$. It is suggested that this compound is an antiferromagnetic substance. The effective number of Bohr magnetons calculated from the observed Curie constant C is $2 \cdot 17$. This value is far less than the value expected for $S=\frac{5}{2}$. The rather distorted oxygen tetrahedra as found in this structure would give a strong crystalline field to the Fe^{3+} ions so that the $3 d$-electrons would take the low spin states, $(d \gamma)^{4}(d \varepsilon)^{1}$. The deviation of the observed effective number of Bohr magneton from the value for $S=\frac{1}{2}$ may imply that the orbital angular momentum for $d \varepsilon$ is not perfectly quenched.

It has been shown that in oxide systems, magnetic moments are aligned by the super-exchange interaction
through the intervening oxygen ions, and the effect is at its maximum for a cation-oxygen ion-cation angle of 180° and a minimum for 90°. In the structure of barium monoferrite, all the Fe^{3+} ions are found in pairs parallel to the c axis. These pairs have an intervening oxygen ion with an angle 174° for $\mathrm{Fe}^{3+(\mathrm{I})-\mathrm{O}^{2-}(\mathrm{IV})-\mathrm{Fe}^{3+}\left(\mathrm{I}^{\prime}\right)}$
 Further, parallel to the (001) plane all the Fe^{3+} ions are found to form hexagons. In these hexagons, too, the Fe^{3+} ions have an intervening oxygen ion with an
 115° for $\mathrm{Fe}^{3+}(\mathrm{I})-\mathrm{O}^{2-}(\mathrm{II})-\mathrm{Fe}^{3+}(\mathrm{II})$ and with an angle 116° for $\mathrm{Fe}^{3+}(\mathrm{II})-\mathrm{O}^{2-(}(\mathrm{III})-\mathrm{Fe}^{3+}\left(\mathrm{II}^{\prime}\right)$. These situations may favor, below the Néel temperature, the moments of the two iron ions on either side of an oxygen ion to be antiparallel to each other by super-exchange interation.

The authors wish to express their sincere thanks to Professor T. Watanabé for his guidance throughout the course of this work and to Professor K. Osaki for his valuable advice. Thanks are also due to Dr S. Kisaka, Manager of their Laboratory, for his encouragement and to DrH. Sasaki for the preparation of the specimen. They are grateful to Dr T. Ashida for programming the block-diagonal least-squares.

References

Arlett, R. H., White, J. G. \& Robbins, M. (1967). Acta Cryst. 22, 315.
Decker, B. F. \& Kasper, J. S. (1957). Acta Cryst. 10, 332.
Do Dinh, C. \& Bertaut, E. F. (1965). Bull. Soc. franc. Minér. Crist. 88, 413.
Glasser, E. P. \& Glasser, L. S. D. (1963). J. Amer. Ceram. Soc. 46, 377.
Goto, Y. \& Takada, T. (1960). J. Amer. Ceram. Soc. 43, 150.

Inoue, Y. \& Lida, S. (1958). Invest. Ferromagnetic Metal Oxide, 6, 31.
Hill, P. M., Peiser, H. S. \& Rait, J. R. (1956). Acta Cryst. 9, 981.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kanamaru, F. \& Kiriyama, R. (1964). J. Chem. Soc. Japan, Pure Chem. Sect. 85, 458.
Lotgering, F. K. (1959). J. Inorg. Nucl. Chem. 9, 113.
Okazaki, C., Kubota, B. \& Mori, S. (1955). National Tech. Rep. 1, 23.
Okazaki, C., Mori, S. \& Kanamaru, F. (1961). J. Phys. Soc. Japan, 16, 119.
Okazaki, C. Mori, S. \& Mitsuda, H. (1963). Acta Cryst. 16, A 23.
Perrotta, A. J. \& Smith, J. V. (1968). Bull. Soc. franç. Minér. Crist. 91, 85.
Qurashi, M. M. (1963). Acta Cryst. 16, 307.
Sakurai, K. (1958). Acta Cryst. 11, 840.
Tokonami, M. (1965). Acta Cryst. 19, 486.
Wallmark, S. \& Westgren, A. (1957). Arkiv. Kemi Mineral. Geol. 35, 1.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

